Acta Crystallographica Section E

## Structure Reports

Online
ISSN 1600-5368

## Shan Liu, Jin-Xiu Ji, Dan-Dan Wang and Hong-Jun Zhu*

Department of Applied Chemistry, College of Science, Nanjing University of Technology, Nanjing 210009, People's Republic of China

Correspondence e-mail: zhuhj@njut.edu.cn

## Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.006 \AA$
$R$ factor $=0.078$
$w R$ factor $=0.188$
Data-to-parameter ratio $=16.2$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]
## 4,6-Dibenzoylisophthalic acid acetone disolvate

In the crystal structure of the title compound, $\mathrm{C}_{22} \mathrm{H}_{14} \mathrm{O}_{6}$-$2 \mathrm{C}_{3} \mathrm{H}_{6} \mathrm{O}, 4,6$-dibenzoylisophthalic acid is linked with two acetone solvent molecules by strong intermolecular $\mathrm{O}-$ $\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds. Weak intermolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds may be effective in stabilizing the crystal structure.

## Comment

4,6-Dibenzoylisophthalic acid (DBIA) and its isomer 2,5dibenzoylterephthalic acid (DBTA) can be utilized to synthesize organic semiconductors and conjugated polymers (Tonzola et al., 2003); these are of wide current interest for applications in electronic and opto-electronic devices including light-emitting diodes (Kolosov et al., 2002), thin film transistors, and photovoltaic cells (Antoniadis et al., 1994). We report here the crystal structure of the title compound, (I).

(I)

The molecular structure of (I) is shown in Fig. 1 and selected geometric parameters are given in Table 1. The bond lengths and angles are within normal ranges (Allen et al., 1987). The orientations of the benzoyl substituents with respect to the central benzene ring may be described by the torsion angles $\mathrm{O} 3-\mathrm{C} 13-\mathrm{C} 16-\mathrm{C} 17$ [116.8 (4) ${ }^{\circ}$ ] and $\mathrm{O} 8-$ $\mathrm{C} 22-\mathrm{C} 20-\mathrm{C} 19$ [110.9 (5) ${ }^{\circ}$ ].

In the crystal structure, one DBIA and two acetone molecules are linked by two strong $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds (Fig. 2 and Table 2). The presence of acetone solvent molecules in the structure (in a $2: 1$ ratio) may play an important role in the packing mode since the numbers of hydrogen-bond acceptors and donors differ significantly from DBIA molecules themselves. Weak intermolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds may be effective in the stabilization of the crystal structure.

## Experimental

The title compound, (I), was prepared from a mixture of pyromellitic dianhydride ( $10.9 \mathrm{~g}, 50 \mathrm{mmol}$ ), powdered anhydrous aluminum


Figure 1
The molecular structure of (I), with the atom-numbering scheme. Displacement ellipsoids are drawn at the $50 \%$ probability level. Hydrogen bonds are shown as dashed lines.


A packing diagram for (I). Intermolecular $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds are indicated by dashed lines.
chloride ( $30.0 \mathrm{~g}, 225 \mathrm{mmol}$ ) and benzene ( 250 ml ), heated with stirring at $338-343 \mathrm{~K}$ for 4 h (Imai et al., 1975). The reaction mixture was poured slowly into water ( 175 ml ) containing concentrated hydrochloric acid ( 12.5 ml ). After removal of the benzene by steam distillation, a crude product of the two acids, DBIA and DBTA, was obtained as an off-white granular material. The acids were collected by filtration, washed with water, and dissolved in dilute potassium hydroxide solution ( $200 \mathrm{ml}, 5 \%$ ). After filtration, the acids were reprecipitated with hydrochloric acid. The yield of the mixture of the two acids was 13.2 g ( $70.5 \%$ ). The crude product was dissolved in methanol ( 87.5 ml ) and a small amount of insoluble residue was removed by filtration. The solution was warmed on a water bath, and water ( 62.5 ml ) was added. The white precipitate which formed from the clear solution upon cooling was filtered and dried. The yield of crude DBTA was 6.0 g . The filtrate was then concentrated under reduced pressure to a volume of about 75 ml . During this period, an oil separated which solidified upon cooling. The yield of the crude
acid DBIA was 5.5 g . Recrystallization of DBIA from a mixture of acetic acid/water (1:3) afforded white granules. Crystals were obtained by dissolving DBIA ( 1.0 g ) in acetone ( 10 ml ) and evaporating the acetone slowly at room temperature for about 30 d .

## Crystal data

$\mathrm{C}_{22} \mathrm{H}_{14} \mathrm{O}_{6} \cdot 2 \mathrm{C}_{3} \mathrm{H}_{6} \mathrm{O}$
$M_{r}=490.49$
Triclinic, $P \overline{1}$
$a=9.804$ (2) $\AA$
$b=11.079$ (2) $\AA$
$c=12.251$ ( 3 ) $\AA$
$\alpha=102.81$ (3) ${ }^{\circ}$
$\beta=93.23$ (3) ${ }^{\circ}$
$\gamma=92.81(3)^{\circ}$
$V=1292.9(5) \AA^{3}$

## Data collection

Enraf-Nonius CAD-4
diffractometer
$\omega / 2 \theta$ scans
Absorption correction: $\psi$ scan
(North et al., 1968)
$T_{\text {min }}=0.964, T_{\text {max }}=0.982$
5363 measured reflections
5051 independent reflections
2541 reflections with $I>2 \sigma(I)$

## Refinement

Refinement on $F^{2}$
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.078$
$w R\left(F^{2}\right)=0.188$
$S=1.00$
5051 reflections
311 parameters
H -atom parameters constrained
Table 1
Selected geometric parameters $\left(\AA{ }^{\circ}{ }^{\circ}\right)$.

| O1-C1 | $1.190(6)$ | O5-C14 | $1.316(4)$ |
| :--- | :--- | :--- | :--- |
| O2-C6 | $1.187(5)$ | O6-C15 | $1.193(5)$ |
| O3-C13 | $1.210(4)$ | O7-C15 | $1.318(5)$ |
| O4-C14 | $1.199(4)$ | O8-C22 | $1.214(4)$ |
|  |  |  |  |
| O1-C1-C3 | $120.9(5)$ | O4-C14-C17 | $123.0(4)$ |
| O1-C1-C2 | $120.8(5)$ | O5-C14-C17 | $112.6(3)$ |
| O2-C6-C5 | $121.9(5)$ | O6-C15-O7 | $123.5(4)$ |
| O2-C6-C4 | $122.1(5)$ | O6-C15-C19 | $123.6(4)$ |
| O3-C13-C10 | $122.5(3)$ | O7-C15-C19 | $112.9(4)$ |
| O3-C13-C16 | $118.9(4)$ | O8-C22-C23 | $121.9(4)$ |
| O4-C14-O5 | $124.4(4)$ | O8-C22-C20 | $119.5(4)$ |

Table 2
Hydrogen-bond geometry $\left(\AA{ }^{\circ}{ }^{\circ}\right)$.

| $D-\mathrm{H} \cdots A$ | D-H | H $\cdots A$ | $D \cdots A$ | $D-\mathrm{H} \cdots A$ |
| :---: | :---: | :---: | :---: | :---: |
| O5-H5D . O 2 | 0.82 | 1.87 | 2.685 (5) | 171 |
| O7-H7B $\cdots$ O1 | 0.82 | 1.90 | 2.695 (5) | 163 |
| C9-H9A $\cdots \mathrm{O}^{\text {i }}$ | 0.93 | 2.56 | 3.303 (5) | 137 |
| C18-H18A $\cdots$ O | 0.93 | 2.43 | 2.749 (5) | 100 |
| $\mathrm{C} 21-\mathrm{H} 21 A \cdots \mathrm{O} 3^{\text {ii }}$ | 0.93 | 2.48 | 3.403 (5) | 172 |
| $\mathrm{C} 26-\mathrm{H} 26 A \cdots \mathrm{O} 3{ }^{\text {iii }}$ | 0.93 | 2.56 | 3.393 (6) | 149 |

Symmetry codes: (i) $-x,-y+1,-z+1$; (ii) $-x,-y+1,-z+2$; (iii)
$-x+1,-y+1,-z+2$.
H atoms were positioned geometrically, with $\mathrm{O}-\mathrm{H}=0.82 \AA$, and $\mathrm{C}-\mathrm{H}=0.93$ and $0.96 \AA$ for aromatic and methyl H atoms, respec-

## organic papers

tively, and constrained to ride on their parent atoms, with $U_{\text {iso }}(\mathrm{H})=$ $x U_{\text {eq }}(\mathrm{C}, O)$, where $x=1.2$ for aromatic H and 1.5 for other H atoms.
Data collection: CAD-4 Software (Enraf-Nonius, 1985); cell refinement: CAD-4 Software; data reduction: XCAD4 (Harms \& Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 2000); software used to prepare material for publication: SHELXTL.

The authors thank the Center for Testing and Analysis, Nanjing University, for support.

## References

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. \& Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.

Antoniadis, H., Hsieh, B. R., Abkowitz, M. A., Jenekhe, S. A. \& Stolka, M. (1994). Synth. Met. 62, 265-271

Bruker (2000). XSCANS and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.
Enraf-Nonius (1985). CAD-4 Software. Version 5.0. Enraf-Nonius, Delft, The Netherlands.
Harms, K. \& Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.
Imai, Y., Johnson, E. F., Katto, T., Kurihara, M. \& Stille, J. K. (1975). J. Polym. Sci. Part A Polym. Chem. 13, 2233-2249.
Kolosov, D., Adamovich, V., Djurovich, P., Thompson, M. E. \& Adachi, C. (2002). J. Am. Chem. Soc. 124, 9945-9954.

North, A. C. T., Philips, D. C. \& Mathews, F. S. (1968). Acta Cryst. A24, 351359.

Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany
Tonzola, C. J., Alam, M. M., Kaminsky, W. \& Jenekhe, S. A. (2003). J. Am. Chem. Soc. 125, 13548-13558.


[^0]:    (C) 2006 International Union of Crystallography All rights reserved

